An adaptive two-layer particle swarm optimization with elitist learning strategy
نویسندگان
چکیده
This study presents an adaptive two-layer particle swarm optimization algorithm with elitist learning strategy (ATLPSO-ELS), which has better search capability than classical particle swarm optimization. In ATLPSO-ELS, we perform evolution on both the current swarm and the memory swarm, motivated by the tendency of the latter swarm to distribute around the problem’s optima. To achieve better control of exploration/exploitation searches in both current and memory swarms, we propose two adaptive division of labor modules to self-adaptively divide the swarms into exploration and exploitation sections. In addition, based on the orthogonal experimental design and stochastic perturbation techniques, an elitist learning strategy module is introduced in the proposed algorithm to enhance the search efficiency of swarms and to mitigate premature convergence. A comprehensive experimental study is conducted on a set of benchmark functions. Compared with various state-of-the-art PSOs and metaheuristic search variants, ATLPSO-ELS performs more competitively in the majority of the benchmark functions. 2014 Elsevier Inc. All rights reserved.
منابع مشابه
Optimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy
Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...
متن کاملAn Evolutionary Quantum Behaved Particle Swarm Optimization for Mining Association Rules
In data mining, association rule mining is a popular and well researched method for discovering interesting relations between variables in large databases, which are meaningful to the users and can generate strong rules on the basis of these frequent patterns, which are helpful in decision support system. Quantum Particle Swarm Optimization (QPSO) is one of the several methods for mining associ...
متن کاملAdaptive particularly tunable fuzzy particle swarm optimization algorithm
Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that owes much of its allure to its simplicity and its high effectiveness in solving sophisticated optimization problems. However, since the performance of the standard PSO is prone to being trapped in local extrema, abundant variants of PSO have been proposed by far. For instance, Fuzzy Adaptive PSO (FAPSO) algorithms ...
متن کاملEMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملCross-layer Packet-dependant OFDM Scheduling Based on Proportional Fairness
This paper assumes each user has more than one queue, derives a new packet-dependant proportional fairness power allocation pattern based on the sum of weight capacity and the packet’s priority in users’ queues, and proposes 4 new cross-layer packet-dependant OFDM scheduling schemes based on proportional fairness for heterogeneous classes of traffic. Scenario 1, scenario 2 and scenario 3 lead r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 273 شماره
صفحات -
تاریخ انتشار 2014